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ON FLOW OF ELECTRICALLY CONDUCTING FLUIDS OVER
A FLAT PLATE IN THE PRESENCE OF A
TRANSVERSE MAGNETIC FIELD *

By Vernox J. Rossow

SUMMARY

The use of a magnetic field to conirol the motion of electrically
conducting fluids is studied. The incompressible boundary-
layer solutions are found for flow over a flat plate when the
magnetic field is fixed relative to the plate or to the fluid. The
equations are integrated numerically for the effect of the trans-
verse magnetic field on the velocity and temperature profiles,
and hence, the skin friction and rate of heat transfer.

It 13 concluded that the skin friction and the heat-transfer
rate are reduced when the transverse magnetic fleld is fixed
relative to the plate and increased when fixed relative to the flurd.
The total drag is increased in all of the cases studied.

INTRODUCTION

It has been said that a fluid at a very high temperature is
like a universal solvent which cannot be contained. A
possible method of containing this fluid is suggested when
it is noted that at such a high temperature it would surely
contain ions and quite probably also free electrons. The
fluid would then be an electrical conductor. The invisible
hand of electrical and magnetic fields can then be used to
induce forces on the fluid such that it is prevented from
coming in direct contact with a wall which it would dissolve.

A somewhat similar technique has been in use for some
time in the metal purification industry. It employs & high-
frequency magnetic field which causes eddy currents in a
lump of molten metal which in turn react with the imposed
magnetic field. The metal is thereby suspended in space
if the imposed magnetic field is made strong enough.

Another example is the so-called ‘““perhapsatron’ described
briefly in reference 1. A gas in a doughnut shaped container
is heated to a high temperature by an electrical current dis-
charge. Through the use of the interaction of the resulting
ion current and a magnetic field, the hot gas is prevented from
coming in contact with the surface of the vessel. An appli-
cation of similar principles was used in thermonuclear fusion
experiments in the Soviet Union. The techniques and
results described very briefly in reference 2 indicate that it
was possible to keep the hot fluid from the walls and to
concentrate the hot gases quickly so as to generate a focusing
shock wave.

1 Supersedes NAOCA TN 3971 by Vernon J. Roszow, 1057,

These examples indicate the possibilities which may be
realized through the use of & magnetic-field force on a flowing
conducting fluid. A pumber of situations exist in aero-
dynamics wherein a magnetic or electrical field might be
used to alleviate high convective heat-transfer rates to a wall.
Such problems arise in the flow of air in the boundary layer
and in the vicinity of stagnation regions of an aircraft moving
at very high speeds. If the velocity is high enough the air is
ionized and, therefore, electrically conducting. See, for
example, references 3 and 4. Other examples are those
associated with the flow of the combustion products (which
are hot and generally electrically conducting, refs. 5 through
7) in the propulsion units of aircraft.

The extent to which a given heating problem can be
alleviated is as yet difficult to determine. It would be well
if a few theoretical results were available to evaluate the
effect of a magnetic field on the drag and heat-transfer rate.
An attempt to include all the aerodynamic features of the
flow of air over or inside an aircraft plus the magneto-
hydrodynamic (or more correctly, magneto-aerodynamic)
effects would render the problem so complicated as to make
its solution difficult if not impossible. It is felt that a few
simple basic theoretical solutions would point out the
advantages or disadvantages and yield a rough estimate of
the various quantities entering the problem. It is the
purpose of this report to present the results of several such
solutions which, it is hoped, will extend the information
already available so that such estimates can be made.
Several applications of the results are indicated.

PRINCIPAL SYMBOLS

>
b,B magnetic induction, lines/sq in.
¢r local skin-friction coefficient
C, heat capacity of air at constant pressure,
Btu/slug °F
-
E electric field intensity, volts/in.
2
E total energy, 0,,T+%
erf error function’
erfc - complementary error function, 1-erf
o dimensionless  Blasius  boundary-layer

stream function
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f,, Tautfs ... dimensionless stream function, equation
(26)
F force, 1b
h local heat-transfer coefficient, Btu/sec ft?
°F .
-
= . . ... B
H magnetic intensity, " (ampere) (burns) fin.
) electric current, amp
->
7 electric current density in the fluid, amp/sq
in.
-
J electric current density associated with
generation of magnetic field, amp/sq in.
k thermal conductivity, Btu/sec ft? °F/ft
l characteristic length
. aB2 .
m magnetic parameter, ou » per 1n.
B2
m S ber sec
—_— 2
M magnetic Hartmann number, \ / dj:l
P pressure, 1b/sq in.
Q Bl
oU
Re Reynolds number
s Laplace transform variable
time, sec
r temperature, °R
w,0,W velocity components in z,y,z directions
T Laplace transform of velocity « (see eq.
S (14))
U velocity, ft/sec
2,Y,2 coordinate axes, x alined with free stream
Yo
L] e Ve
0 excess charge density, coulomb/cu in.
.. . 1
A magnetic viscosity, _41!’0';'1
I coefficient of viscosity, slugs/ft sec
3 ‘magnetic permeability, (volt)(second)/
(ampere) (inch) .
v kinematic wscomty, ft?/sec
¢ z
P density of fluid, slugs/cu ft
v conductivity, mhosfin.
T shear stress, lb/sq in.
v stream function
SUBSCRIPTS
0 basic quantity
® free stream
B magnetic induction
e electron
w at plate, 5=y=0
SUPERSCRIPTS
(-) ) vector quantity

(), ) ()" derivatives
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HISTORICAL REVIEW OF MAGNETO-HYDRODYNAMICS

The earliest known published works treating a problem in
the flow of an electrically conducting fluid through a mag-
netic field are those of Hartmann and of Hartmann and
Lazarus in references 8 and 9. Since that time a number of
theoretical and experimental studies have been carried
out. Some of these pertain to the flow of a conducting fluid
but a larger number relate to the dynamics of ionized clouds
or stars. No attempt will be made here to include a com-
plete discussion of the latter group. However, much can
be learned by studying the papers on the flow of conducting
fluids. These papers will be divided into seveml groups
according to the type of problem treated.

1. Flow in a channel (refs. 8 through 19).

2. Flow about bodies of various shapes (refs. 20 through
22).

3. Related papers on astronomy (refs. 23 through 26).

The various papers will be reviewed briefly on a group basis
and reference tb particular papers given only in special
mstances.

FLOW IN CHANNEL

Following his invention of the electromagnetic pump ? in
1918, Hartmann, reference 8, developed equations which
describe the steady-state flow inside a channel in the presence
of a magnetic field or a magnetic and electrical field. Inter-
est was stimulated in problems of this type when it was found
in reference 9 that a turbulent stream could be stabilized to .
the extent that it could be forced to return to a laminar {flow.
Such 2 sequence of events is opposite to the usual form of
transition when a magnetic field is not present. Further
investigations by other authors, references 10 through 19,
substantiated these results and led to the introduction of

terms such as “magnetic viscosity,” )'=471ﬁ' “magnetic

2
Hartmann number,” M—-BLJ and @= %l

A rigidity of the fluid is brought about by a coplanar
magnetic field so that stabilization is achieved because the
conducting fluid experiences a force which resists the motion
across the magnetic lines of force (ref. 13). For example,
if the main fluid flow direction is parallel to the magneblc
lines of force, no interaction takes place unless some devia
tion or instability arises. In this event, a restraining force
will be induced which is proportional and opposite to the
velocity component perpendicular to the lines of force,
tending to damp out the initial instability.

When the magnetic field is perpendicular to the flow
direction, & change is brought about in the velocity distribu-
tion. This may make the fluid flow more stable or unstable
to transition to turbulence. In the case of flow of an elec-
trically conducting fluid through a transverse magnetic field
in a two-dimensional channel (refs. 9 and 14), the change in
the velocity profile had a very favorable effect on transition.
Such is not always expected to be the case in other flow
problems.

2 Electromagnetlc puraps are used in atomic energy plants to transfer radioactive
solutions from one place to another (e. g., ses p. 32 of Atomic Power—a Sclentific Amerlcan
book, 8lmon and Schuster Inc., New York, 1955).
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These two techniques which increase the stability of fluid
flowing in & two-dimensional channel were studied theoreti-
cally in references 13 and 14. The transition boundaries
are given in graphical form for a range of the magnetic
parameter. It was observed that a considerable increase in
laminar run could be achieved at the higher values of the
magnetic parameter.

FLOW ABOUT BODIES OF VARIOUS SHAPES

The papers describing the external flow of a conducting
fluid about bodies are small in number. ‘The three references

listed, 20 through 22, describe the flow of a conducting fluid |

around a circular cylinder and & sphere in the pFesence of a
magnetic field; the third paper treats the stability of the
flow between rotating cylinders. Streamlines are shown in
the first two cases and the stability boundary for the latter
case. Problems in this category are naturally more difficult
than the unidirectional channel flow problems dlSCllSSBd in
the previous section.

RELATED PAPERS ON ASTRONOMY

A nced for understanding the motion of electrically con-
ducting fluids (ionized clouds) has been felt by astronomers
for some time. The dimensions and quantities considered
are generally not reproducible in the laboratory or in the
earth’s atmosphere; however, some of the equations and
results may be applied to aerodynamic problems. '

In reference 23, Batchelor investigated the possibility of
spontaneous magnetic fields arising in a conducting medium
as a result of turbulence. He found that unless 4xfov>1
such fields cannot occur. In all foreseeable problems in
aerodynamics 4muov is many orders of magnitude less than 1,
ruling out spontaneous magnetic fields in a fluid due to
turbulence.

The manner and velocity at which pressure waves are
propagated in an ionized fluid and other cosmic problems
are treated in references 24 through 26. The results of
these studies on wave propagation may be useful in studying
interference problems on high-velocity aircraft.

MAGNETO-AERODYNAMIC EQUATIONS

The equations which describe the flow of an electrically
conducting fluid in the presence of magnetic and electrical
fields will now be discussed. The equations are simplified
to the extent that the flow is assumed to be incompressible
and to have constant properties (C,, u, k) throughout the
flow field. In all cases except one, the electrical conductivity
of the fluid is assumed to be constant,

MOMENTUM-TRANSPORT EQUATIONS

The momentum-transport equations for the flow of a
viscous incompressible fluid consist of a combination of the
force terms arising from the excess charge density 6, and in-
duced magnetic effect due to the motion of the conducting
fluid through magnetic lines of force (see, e. g., refs. 23 and
27) and the usual Navier-Stokes relations (see, e. g., ref. 28).
In equation form, these force terms are,

- e
F=9E+; XB

=
where the term 6F results from the electrostatic force on the
excess charges due to the presence of an imposed electric

field E The second term describes the force on the fluid
due to the interaction of the electrlc current, _7, in the fluid

and the magnetic induction B. The differential equation
can be written in vector notation as

DU oE s
Dt Ej 6y

where p is the fluid density, 6 is the excess charge density,
and & is the magnetic permeability. The substantial deriva-
tive D/Dt is associated with the use of spatial coordinates.
A simplified version of Maxwell’s equations appropriate for
the present problem is

> -> = o
div H=0; div J=0; itH=B (2a)
- ->
curl H=4xJ ~ (2b)

A reduced form of the generalized Ohm’s law is, from
reference 29,

J=o(E+aUXH) 20)

The more complete form given as equation 2-22 in reference
29 includes additional terms accounting for gravity and pres-
sure gradient effects. Both of these factors will be assumed
negligible in this analysis. It will also be assumed that the
conductivity, o, does not have directional properties.

The continuity equation is

. >
div U=0 (3)
Equ&tlon (2b) expresses the relation between the magnetlc

intensity H and the total electric current densn:y J The

distinetion between the current densﬂnw 7 and J lies in their
location and action. Consider first the situation When the

fluid is stationary and the electric field intensity E’ 18 zero.
The current dens1ty in the fluid is then zero. The magnetic

field strength H,, or magnetic induction B,,=pHo is a result
>
of an electric current J, outside of the fluid. The current

_)
density J, could be thought of as an electric current in a
coil or electromagnet outside the flow region producing a
magnetic field of a given number of lines of force per unit

area. The relation between :T),, and ﬁ', is given by equation
(2b). The basic magnetic field strength will be designated

-
as H,.
When a conducting fluid moves through the magnetic

._)
lines of force, B,, the positive and negative charges are each
accelerated in such a way that their average motion gives

> > b S SRS
rise to an electnc current j=oU X.B, where B=B,+4b. The
quantity b Is | the magnetic induction r%ultmg from the elec-
In this analysis b will be con-

tric current j in the fluid.
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sidered 2s a perturbation on the basic field strength and

negligible in comparison with §a ; that is, from equation (2b),

2> S 5> o -
curl (B,+b)=4ru(J,+7)=4xnJ

or
- o
curl B,=4xpJ,
2 =2
curl b=4xyj
2>
where B >b.
-
If an electric potential Z were to be imposed across the

flow field, the current density would be changed by?:oii)'.
However, the boundary conditions will be taken so that the

5
impressed potential, E’, is zero. Therefore,?=aﬁxBa; that
is, the electric current is proportional to the voltage generated
by the relative motion of the fluid and magnetic field.

The fluid is assumed to be ionized and thereby an electrical
conductor. However, within any small but finite volume the
number of particles with positive and negative charges are
nearly equal. The total excess charge, 6, in this small bus
finite volume will be taken as equal to zero. It has been
shown in reference 17 that a very small increase in viscosity
is realized due to the increased ordered-migration velocities
of positive and negative ions in the presence of the electric
field. This effect will be neglected and the electrostatic force

-_}
term, 0F will be assumed to be identically zero.

5 o
The induced electromagnetic force term, 7XB, will now
be related to the local velocity vector. The procedure used
in references 10, 19, and 22 which results in the magnetic
pH?

parameter o (ratio of electromagnetic and inertia forces)

and the magnetic viscosity A= L = will not be used. In-

4ro

stead a procedure will be followed which will lead to the
magnetic parameter, Q=%: used by references 7, 9, 11, 12,
and 13.

N

A relation between j Xg and the velocity is obtained from
equation (2). It will be assumed that:

(1) Magnetic field lines are perpendicular to free-stream
velocity.

(2) Permeability 1 is constant throughout the fluid.

(3) The assumptions already made are that the excess

charge density 6 and 1mposed electric field intensity E’ are
assumed to be zero.

(4) Induced magnetic field b is negligible, linearizing the
induced magnetic force term.
The first assumption is not highly restrictive since the per-
pendicular component of the magnetic field is the only part
contributing a force which will change the laminar velocity
profile. The other assumptions are reasonable physical
approximations.

If these assumptions are used together with equation (2c),
the induced magnetic force term becomes

23 . 5
__J_><__o=_% (UxB, XB, (5)
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From vector relations,

—2(TxB,) xBo=2 [U(B -B,)-B, (3. ):|

However, it has been assumed that Bo is perpendicular to

the free-stream velocity 5’, (assumption (1)). In the prob-
lems treated, the local velocity direction differs a negligible

.’IXB

> o
amount, from. the free-stream direction so that B,-U=0 and

the linearized magneto-hydrodynamic force term becomes

1 2 -
—IXBo_oBiG_ 7 ®

The parameter * m is related to the viscous Reynolds num-
ber and the Hartmann number of references 8 through 12 by

oBjl_oBjlX 1 M:
o n pU.l Re
I

ml=

Equation (1) may then be written as
[_j’ B2 | s
%t—l-f—p"— U+1; grad p=wyU )]

In the development of equation (7), it was assumed that
the velocity of the magnetic field is zero. Since only the
inductive force is being considered, the second term becomes

Uf : U—UB for & magnetic field in uniform translation,

where UB is the velocity of the magnetic field.

When electrical currents flow in a plasma it is well to
define the conditions at the solid boundaries of the flow
field. The problems treated are assumed to be two-dimen-
gional with the electric current flowing from and to infinity:
parallel to a flat plate and perpendicular to the stream
direction. The configuration mey also be thought to con-
sist of flow in a wide channel with the two side walls as
conductors connected by a conductor of negligible resistance
located outside of the influence of the flow field. The flow
in the middle of such a channel should approximate the
two-dimensional type of flow being analyzed. Such phe-~
nomeng as charge accumulation and boundary effects at the
walls will be assumed negligible.

THERMAL ENERGY TRANSPORT EQUATION

The differential equation describing the relationship be-
tween the convection and conduction of thermal energy
and the work done on an electrically conducting fluid in the
presence of a magnetic field is found by considering the

3 From electric motor equations, it can be shown that
force
L e
oBé= i velodty
and therelore

oBA_ uHo’>(ﬂ Uel)= (magmatic Eressure) (magmatlo Reynolds)
Ve \pUazt/) = dypamio pressure number
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energy entering and leaving an elementary cubic box. The

result is given by

o0, L pra Ly 22y, { [

+(ap) ) I+
5%"'5‘1})—*' bw,bv

oy ' 0z +<bz aw) } ®

The derivation of equation (8), with the exception of the
second term on the right of the equal sign, can be found,
for example, in reference 28. The term on the left of the
equal sign takes account of the enthalpy transported by
the motion of the fluid or by convection. The first term on
the right represents heat conducted from one element of
fluid to the next by molecular motion. The expression,
7*/e, is the heat added by the electrical current produced
by the motion of the fluid through magnetic lines of force
or by an imposed electrical field (see eq. (2¢)). The re-
maining terms arise when work is done on the fluid by
either pressure or shear forces. The symbol D/D¢ is the
substantial derivative of the particular quantity and v?
denotes the Laplacian.

If the general expression for the electric current density,
a8 given by equation (2¢), is inserted into the expression
for the heat added by electrical means, the result is

PooB40xE) ®

It has been assumed that the electric field E is zero and that
the magnetic field lines are perpendicular to the free-stream
direction. To & good approximation in the problems to be
considered, equation (9) can then be wriiten as

=gU?B,? (10)

where U2 must be written as (U— Ujy)? when relative motion
exists between the magnetic field and the plate. Equation

(8) is then
3 T+
v , Ou\?, /ow , Ov\?, /du, Qw ’}
bx+b1/> + oy { bz) +<bz ' oz (1)
IMPULSIVE MOTION OF A FLAT PLATE

The impulsive motion of an infinite flat plate *in a viscous
fluid serves as a model for the boundary layer on & semi-
infinite flat plate. The advantages of working the problem
of the impulsive motion of a flat plate are that it is simple
enough to yield a result in closed form and suggests the
proper choice of parameters to be used on the more compli-
cated problem of a semi-infinite flat plate.

The velocity profiles will be found for two cases. In the
first it will be assumed that the magnetic lines of force
are fixed relative to the plate, and the second relative to the
fluid. In both cases the fluid is of uniform density apd

4 This problem {s often referred to as the ‘ Raylelgh problem” when the fluld is incom-
pressiblo and nonconducting.

n%I=kv’T+ oU*B ’+ +“{ [(g;f) +<
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viscosity, and has the same electrical conductivity through-
out. A third case, in which the magnetic field is fixed on
the plate and a compensating pressure gradient exists in the
fluid, will be shown to be equivalent to the case wherein the
magnetic field is fixed relative to the fluid. The problem
wherein the fluid conductivity varies will not be considered.
The fluid and plate will be assumed to be initially at rest.
At time t=0, the plate will move impulsively with a given
velocity.

MAGNETIC FIELD FIXED RELATIVE TO THE PLATE

At time ¢<0, the fluid, plate, and magnetic field are as-
sumed to be everywhere stationary. At time =0 and for
all later times the plate and magnetic field are moving at
velocity u=u. (fig. 1). The problem is to find the velocity-
time history of the fluid.

Plate =~

\ \
\
Y
\
A

Yo
S

Freaure 1.—Flat plate moving impulsively through a fluid in the
presence of a transverse magnetic field.

The velocity in & given y=constant plane does not change
with 2. It can then be reasoned that the vertical, », and
transverse, w, velocities are zero or negligible together with
the pressure gradlents in all directions. Equation (7) then
reduces to

(12)

Since the magnetic field is moving and the fluid is initially

at rest the relative motion must be accounted for. Equation
(12) is then
ou . B2

The boundary conditions are
U=, y=0, t>0
u=0, y>0,t=0
The Laplace transform of tile velocity u is defined as

e f " etudt (14)
0
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Applying the Laplace transformation (see, e. g., refs.
30 and 31) to the first term in equation (13) gives

L)), e gidmtue),

=8UuU

—l—sfm e *u dt
0

If the other terms of equation (13) are treated similarly,
the transformed equation is

dor , mau, —
s

sﬁ—u
or
d"’l_l/_— 8+ m, mﬂl:a,
dyg—u < v v8 (15)
The solution to equation (15) is the sum of the solution of the
homogeneous equation plus the particular solution, that is,

g s
[01(8)6— V=0V

The constant C, is chosen equal to zero to fit the boundary
condition that % must be finite at y=. The integration
constant Cy(s) is found from the boundary condition at
9#=0; that is, on the plate

MUy | MU,

s(st+m,) ' s(s+m,)

=

/u'l-0=uw
The Laplace transform of u,, is #./s. Therefore
01(8) =
and
fafmy
= Ml ' —vv—
s(st+mp ' .'3+1n1 (16)

Equation (16) can be inverted with the aid of reference 30.
Combining several terms gives

(17

U=U,| 1 4
= 2+/vt.
The symbol erf denotes the error function of the argument.
The error function is discussed in reference 31 and tabulated
extensively in reference 32. Typical velocity profiles are
shown in figure 2 (a). If m, is set equal to zero, equation (17)
reduces to the result for the Rayleigh problem; that is,

u(l—er Y
= 24t

The velocity is a function of y/2+/vt only and therefore a
single profile suffices. However, when a magnetic field is
acting on the fluid, the velocity profiles are not similar
because they change with time according to e~®4. The fluid
at infinity is accelerated by the magnetic field so that the
entire mass of fluid is accelerated by the magnetic field. It
is, in fact, accelerated more rapidly than when the only force
ia the viscous action between layers.
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24
mlf=0----\
16 Q. |O"\ \ |
2/ 40:\ Ve N\
6 : 20~
\\‘
----- RY
(o) -40 (b)
o { ! ! I
4 8 2 0 4 8 12

(a) Magnetic field fixed relative
to plate.

(b) Magnetic field fixed relative
to fluid.

Fiaure 2.—Boundary-layer velocity profiles on a flat plate set into
motion impulsively.

The skin-friction coefficient is expressed as

Qu . -
¢ _#( /35//)2|1 0 (18)
so that, from equation (17),
2v

Values of ¢, are shown in graphical form in figure 3. When
m, is zero, equation (19a) reduces to the skin friction for the

_nonelectromagnetic Rayleigh problem.

16
12 Fixed relotive fluid
U
T
B No magnetic freld
Fixed relative plate
.4 =
] J 1 1
o 2 4 8 8 10
m/
Fiauvre 3.—Skin friction parameter as a funotion of a magnotic
parameter.

The change in the velocity profile is a result of the force
exerted by the magnetic field on the fluid. The reaction on
the unit generating the magnetic field is expressed as

Funit area= [(oB}u,—w)dy=oB,2sm [
13

Y_q
2t Y
(19b)

The force per unit area goes to infinity as the upper limit of
integration goes to infinity because the magnetic field extends
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undiminished an infinite distance from the plate. Thereby,
an infinite amount of fluid is accelerated, resulting in an
infinite force.

MAGNETIC FIELD FIXED RELATIVE TO THE FLUID

At all times less than zero the fluid, magnetic field, and
plate are assumed to be at rest. At time {=0 the plate
begins moving with velocity u=wu, but the magnetic field
remains at rest. The differential equation is the same as
equation (12) because there is no relative motion between
the fluid at y=c and the magnetic field.

5 +mlu by’ (20)

The boundary conditions are
U=1U, aby=0t20
at y>01¢=0

Applying the Laplace transformation to equation (20),
a8 was done in the previous section, yields the transformed
equation

u=0

du_ _
v d—y,=u(3+m1)
The solution to this ordinary differential equation is
a2t 2+m
T=C,()e "V 7 +Ce TV

where the constant (; is set equal to zero because of the
requirement of a finite velocity at y=«. The integration
constant, Cy(s), 18 found from the boundary condition at
y=0, 120, as

Ci(s)=—=

Equation (20) can be written as

U - a+m|%
=._°_—e L4
(8+my)—m,

This equation can be inverted with the aid of reference 30 as

)]
(21)

The symbol erfe denotes the complementary error function
defined as 1—erf (see, . g., p. 370 of ref. 31). The velocity
is once again dependent on more than one parameter so that
o single similar profile cannot be drawn. Several profiles
are shown in figure 2 (b). The fluid at y=« is not disturbed
in this case because the velocity across the magnetic lines
is zero. In the vicinity of the plate the induced magnetic
force counteracts the acceleration force of viscosity resulting
in an increased rate of shear at the walls as expressed by the
skin-friction coefficient.

u=12l’— [ v erfc >+e erfo

Yy
X 2

3

= (\/El erflmqt + ’ (22)
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Even at time, i= «, a friction force acts on the plate—a situ-

ation contrary to the previous case and the Rayleigh problem.

Values computed by equation (22) are shown in figure 3.
The force on the magnetic field is given by

Flunit area— f "eBudy 23)
0

where  is given by equation (21). The force is finite in this
case.

Another case which may be of interest arises when the
magnetic field is fixed on the plate but & pressure gradient
compensates for the action of the magnetic field at y=o. A
flow of this character may be imagined to exist in the early
stages of boundary-layer formation on the walls of a two-
dimensional channel. The conducting fluid is assumed to be
pumped through a channel containing e stationary transverse
magnetic field. A pressure gradient arises automatically to
compensate for the resistance of the magnetic field. The
equations then describe the boundary layer as a function of
time, after the pump has started. For this case equation (7)
reduces to

-I—mx(u um)+— 92

byi
. . 1op. ..
The pressure gradient P found by examining the bound-
ary condition mentioned above at y=w. Aty=w
ot of

Therefore, at y= o,

10p
mlum—l-; bx=0

and the above equation becomes equation (12). Since the
boundary conditions are the same as when the magnetic field
was fixed relative to the fluid, the results shown in figures
2 (b) and 3 apply here also.

BOUNDARY LAYER ON A SEMI-INFINITE FLAT PLATE

In the analysis of the boundary layer on a flat plate moving
impulsively, it was found that the shape of the boundary-
layer velocity profile changes with time, necessitating a new
calculation at each instant. Therefore, a simple transforma-
tion of the coordinates would not yield a similar solution
wherein all profiles could be drawn as one. It is then to be
expected that in the flow of an incompressible fluid over a
semi-infinite flat plate in the presence of a magnetic field, a
similar solution will not exist. Since the boundary-layer
solution of Blasius is not known in closed form and the
velocity profiles at two different stations along the plate are
not similar, a numerical solution to a series expansion is
found by the method used in reference 33. The first or
zero-order term is found to be the same as the Blasius solu-
tion which is well known and is tabulated, for example, on
page 103 of reference 28. The first nonzero term will be
calculated for the cases studied here.

The boundary-layer velocity and temperature profiles will
be found for three cases. The conductivity of the fluid is
assumed to be uniform throughout the flow field in the first
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and second cases. A particular variation is assumed in the
third case. The magnetic field is fixed relative to the plate
in the first and third cases and relative to the fluid in the
second case. A fourth case is shown to be equivalent to the
second. In all cases the fluid will be assumed to be incom-
pressible and to have a Prandtl number of 1.5

MAGNETIC FIELD FIXED RELATIVE TO THE PLATE

Velocity profile—The magnetic field lines of force are
assumed to be perpendicular to the free-stream direction and
to begin at the leading edge of the plate as indicated in
figure 4. An experimental setup may be imagined to consist
of a wing or flat plate in a stream of conducting fluid such as
mercury, sodium, or salt water. A magnetic field is impressed
across the flow field using either a permanent or electro-
magnet.

= f
Yo Y ///// /
—_ ’ |/

. 1
Fioure 4.—Fluid flowing past a semi-infinite flat plate in the presence
of a transverse magnetic field.

On the basis of the usual boundary-layer assumptions,
equation (7) reduces to

u%‘-{—v by—l-mlu—vby, 24)

The boundary conditions are that ©=0 at y=0 and u=xu,
upstream of the plate. Aty=w,du/dy=0 and du/ox=—m,.
Qutside of the boundary layer the continuity equation
requires that dv/dy=m,;; therefore, »—»>= as y—w. If the
flow field is restricted to the vicinity of the surface of the
flat plate, no real difficulty arises. In an actual problem
the magnetic field will not extend uniformly to large distances
from the plate. At the location where the magnetic field
strength dies out another viscous layer will develop. This
slip layer will be ignored. Equation (24) is the same as the
incompressible boundary-layer equation except for the
additional term myu. As was done in the Blasius boundary-
layer solution, the transformation, -

=z
— fu. (25)
)

is introduced. The stream function, ¢, is defined as

§b='\"uc1’3[fa%f1+m@ts+(mfl?)snfa‘l‘(mx)fﬂ ... (26)

where the functions fo, fi, fs, . . . are functions of 5 only.
The series expansion in 4/mz 1s suggested by equation (21),
$ Recent theoretical computations by Hansen (ref 34) indicate that when the alr is ionfzed

up to 20 or 25 percent, a more realistic value for the Prandt! number would be about 0.3.
When the gas becomes fully lonized, the Prandtl number drops of to the order of 0.0L.
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where the exact form of m is yet to be determined. If the
expression (21) is expanded in a power series in my¢, the odd
power terms contributed by the first and second parts cancel
each other. Also, if these terms are carried along in the
following analysis, the corresponding functions are found to
be zero. Therefore, only whole powers of mz will be
considered in what follows,

The velocity components and their derivatives are found
from. equations (25) and (26) as

_O)_OY0t o40on

U=y 3y omdy

w=u [fy/ - mafy +mafy .. ] @n
o0 dpdE dhdn

U=z " otor on0x
=g —Lfa bty . I
2 [f ot 3mafyt-5(ma) it - . ] (28)
Similarly,
ou ﬂum ” ” Yy
a [fn +mzfy +(ml') f4 + .00+
g—;[2ma-f2'+4(m:c)"'f4’+ oo (298)
%"=um\/% L+ mafy+ (ma)+ ... (20b)
el bmafy - (ma) ] (200)

a,y!

When equations (27) through (29) are substituted into
equation (24) and the like powers of

oBs M?

mz=T<v= Ex (30)

are equated, the following differential equations result:
21" =—1"%s 7 (31)

=R B =g o F —S o f 5 (320)
1= f A F T S LI~ SR~ AT (32)
ete.
The boundary conditions are

fo=fa=fi= . .. =0at =0

fl=f'=f'= ... =0at =0

fJ/=1and fy’=—1 at 3=

i =f'= . =0 at p=o

t
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The differential equations for f, and f, are linear ordinary
differential equations with variable coefficients. Since the
coefficients (Blasius solution) are not known in closed form,
the equations must be integrated numerically. Only the
functions f; and f; of the series will be found because the work
involved is sizable and it is the intent of this study to find
the over-all trends and gross effects rather than precise
results.

The Runge-Kutta method was used to integrate both the
homogeneous and nonhomogeneous forms of equations (32a)
and (32b). The integration is started at the surface of the
plate using two boundary conditions and then assuming a
value for f;’/ and f,/’. The correct solution is found by a
proper combination of the numerical solutions to the homo-
geneous and nonhomogeneous equations. The factor by
which the homogeneous equation is to be multiplied is found
from the boundary condition at p=c. The numerical
results for f; and f, are tabulated in table I (a). The velocity
profiles shown in figure 5 (a) indicate that the flow-separation
at mz=0.5 will probably not be predicted if a sufficient
number of terms are taken in the 'series (27). The first
three terms (f,/, f;/, and fi’) describe the velocity in the
boundary layer quite well up to at least mz=0.2.

The skin-friction coeflicient and the displacement §* of an
incoming streamline are

__0.664—1.789 mx4-0.706 m*x?— . . . 4 . ..

Cr —\/T?Z

s*=may-+(1.73-+0.54 ma+1.34 ma2+ . . . )1/;—
(33b)

(332)

The unit generating the magnetic field is assumed to be
carried by the aircraft. The drag on this unit caused by
the magnetic-field-fluid interaction is

frar 4o
Ffunit area= f aBudy
o
Substituting equation (27),

Flunit area=cB2vuorz | (fo/+mafy+ . . . )dn

=0BAVuvz (fortmufet . . (33¢)

The force is finite only for a conducting layer of finite
thickness.

Temperature proflle—When the pressure gradients are
reasoned to be everywhere zero and the wusual two-
dimensional boundary-layer assumptions are made, equa-

tion (11) reduces to
7o)
Pr by’ FE\2

N Rade

oT oT

C'paz }o0C, 5y o B ut=

If total energy is defined as
2
E=C,T+% (35)
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6

——— st order in mx
——— 2nd osder in mx

T

(o)

4 0 4 8 12

(b)

()

4
T
Ua/26

(&) Velocity.
(b) Temperature distribution for a cool wall, T',=T\,.
(¢) Temperature distribution for an insulated wall.

Figure 5.—Boundary-layer profiles for fluid flowing over a semi-
infinite flat plate with a transverse magnetic field fixed relative to
the plate.

equations (24) and (34) can be combined to yield a differential
equation for the transport of total energy E; that is, if
equation (24) is multiplied by u, added to equation (34), and
the Prandtl number, Pr, is assumed to be 1,

OF b’E

Enmd (36)

+
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' TABLE I.—MAGNETIC FIELD FIXED RELATIVE TO PLATE

(8) Btream fanction (b) Temperature fune- | (0) Temperature func-
tion for cold plate tlon for insulated plate
" h i 4 i 5 ® e Ty T¢ T3 Ty
4al20, | 5120, | B=i2C, | U=I2Cs
1] 0 —0.894 0 ] 0.353 0 . —0.352 0 0
.2 018 —. 178 888 .007 068 .338 —~. 047 —.118 024 .28
.4 —.071 -—.354 868 K- .132 -1 —~. 046 118 . 084 .465
.8 159 -.525 —% .059 .183 .213 —~.001 .338 209 679
.8 281 —. 687 . 099 .218 17 .087 .538 364 . 867
LO —.433 —. 839 730 144 .28 . 088 .213 .715 . 554 1.024
L3 —. 6156 —.978 ~ . 660 .189 .28 —.111 .370 . 859 L771 1.139
14 —. 84 —1.102 —.579 . 230 184 —. 228 .553 . 985 1.008 1.207
L8 —1.055 —1209 —_489 .261 J127 —.338 L7654 1028 1.250 1.224
1.8 -—1.308 —1.298 —. 334 279 050 —.431 . 962 L.047 1.402 1.187
2.0 —=1.573 ~—1.367 —. 206 .280 —. 04 —. 500 1.160 1.020 L7202 1.102
2.2 —~1.852 —1.416 —.197 . 281 —.148 —. 539 1.367 .954 1.930 973
2.4 —2138 ~1.448 —.103 . 221 —.257 —. 544 1549 .864 2.108 811
2.6 —2.420 —1.458 —.017 .159 —.363 —. 514 1.707 . 730 2.253 .628
28 —-2.720 -—1.454 .059 .078 —. 460 —. 450 1.840 503 2.359 . 440
3.0 —3.010 —1.435 .121 —. 024 —. 541 —.358 1044 .453 2.420- 259
3.2 —3. 204 —L 408 .168 —. 139 —. 602 —. 247 2.021 .31 2 464 . 098
3.4 —3.572 -—1.369 .201 —. 264 —. 840 -. 125 2074 205 2. 460 -—.039
3.6 ~3.841 —1.827 .218 —.393 —. 653 —. 005 2.106 .108 2.451 —. 143
3.8 —4.102 —1L253 22 —. 523 —. 042 .106 2.118 .033 2.414 —-.213
4.0 —4.354 —1.238 .18 —. G40 —.611 .199 2,119 —. 020 2,387 -, 253
4.2 —4, 598 -1197 . 200 —. 767 —. 564 .269 2112 —. 054 2.315 —. 267
4.4 —4.833 —-1.15¢ .180 —.874 —. 505 S84 2.099 —.072 2.262 —. 260
4.6 —5.062 —L125 . 166 —. 868 —. 440 .335 2.083 —.078 2.212 - 239
4.8 —5.284 —1.087 .131 —1.049 —.373 384 2.068 —. 075 2,167 —. 210
5.0 —5. 501 -1.073 107 —1.117 -—.307 .316 - 2054 —. 068 2128 - 177
. 52 —5.718 —1.054 .085 -1L173 - 247 . 285 2.041 —. 058 2098 —. 144
5.4 —5.923 —1039 .085 —-1.217 —. 104 .248 200 | —.047 2.070 ~. 113
&6 -—6.129 —L028 049 —1.251 —. 148 208 2 (22 —. 037 2.050 -.087
5.8 —6.334 —1.010 .038 -1.277 - 111 .168 2.018 —.028 2.035 —, 004
6.0 —6.587 ~1.013 .28 —1.208 ~.081 .132 2.011 —.021 2024 —~. 047
6.2 —8.738 —L009 .018 —1.309 -—. 057 101 2.007 —.015 2.018 -~ 033
6.4 —6.840 -1.008 .012 —1.318 —.040 .075 2. 005 —.010 2.011 —.022
6.6 —7.141 —1.004 .008 -1.328 —. 087 054 .2.003 —. 007 2.007 —.016
6.8 -—7.342 —L 002 . 005 —1.330 —.018 .038 2.002 —. 004 2.005 —.010
7.0 -7.542 —L 001 - .003 —1.333 —.012 .028 2.001 . 003 2003 —~. 006
7.2 —7.743 —1.001 .002 -—1.335 —. 008 017 2.001 .002 2.002 -, 004
7.4 —~7.943 —1.001 .001 —1.336 —.005 .011 2.000 . 001 2.002 —. 002
7.6 —8.143 —LO0 .001 —1.337 —. 003 .007 2.000 .001 2.001 —.001
7.8 - —8.343 -1.0 0 —1.337 —.002 004 2.000 0 2.000 —. 001
8.0 —8.543 -1L0 0 -1.338 -—.001 002 2.000 0 2.000 0
82 —8.743 —L0 0 —~1.338 o .001 2.000 0 2.000 0
8.4 -8 3 -1.0 (1} —1.338 1] 0 2.000 0 2. 000 0
8.6 —9.143 -1.0 0 —1.338 0 0 2,000 0 2.000 0

Although the temperature distribution is altered by the
presence of the magnetic field because % and v are affected,
the total energy of the conducting fluid is not. The kinetic
energy removed by the force of the magnetic field is exactly
equal to the heat generated by the electric current, inde-
pendent of the field strength B, and the conductivity ¢. An
analogy may be drawn by considering a similar situation for
an electric motor. Assume the motor to be rotating at a
given speed. The power is then turned off and the arma-
ture is short-circuited. The motor will decelerate at a given
rate depending on the field strength, resistance of the eircuit,
and rotational speed, just as in the fluid flow problem. The
temperature rise of the wires, insulation, etc., however, de-
pends only on the initial kinetic energy of the rotor. If the
conductivity of the wires (or fluid) is reduced, the time re-
quired to stop the motion will be increased but the total
J*le or joule heat is not changed.

A first-order estimate of the influence of the magnetlc
field on the temperature profile can be found from equation
(34) together with equations (25) through (29) and table

I (a). Assume that

T=T,(n)+ Ta(n)yma+ Ty(m)ym*s*+ . . . (87)
where, T3, T, . . . are functions only of 3=y —‘/%" and
T'=T:=T; ... =0 as in the part of the problem dealing

with the velocity profile. The derivatives of the tempera-

ture with respect to # and y are found as

oT bTE)ELE)Tbn
dx Ot Oz ' O7 Or

oT 1
dz

[mxT2+2m2$2T4+

g(To'+mng'+m=x*Tx+ . ~ (38)

.)]
2T T dn .
et e (@ maTy T L)

‘When the various expressions are inserted into equation (34)
and terms containing like powers of mz are equated, the
differential equations for 7', and T are

TI/ ’fo |

7

w(f)?
Prt 2 c, =0 (39)
AL TS AT A A1) =0, (40)
"The boundary conditions are
T.=T, at =0
T=T. at g=o
Tz”=T2,£O at =
'Ty=0 at n=0
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The solution to equation (39) was first found by Pohlhausen
and is discussed on page 246 ff. of reference 28. The func-
tion T(y) is the temperature profile for a bounda.ry layer
on a flat plate and is given by (assuming Pr=1)'

U ? P
T=To (T To~gg) 0155 A5 @D
The derivative of T, to be inserted into equation (40)
becomes
Y7 _ _'u';-»2 Us? 1)
TO ha fa (TW Tm 20p+0p fD

For simplicity, the temperature of the plate will be assumed
to be the same as that of the fluid far from the plate; that
is, Ty=T,.. Equation (40) then becomes (Pr=1)

(42)

1+ 1Y T g [ S 10 (502 ) G2t 1 [=0

(43)

Equation (43) was integrated numerically by the same
method used for equation (322) and the results are tabulated
in table I (b). Several temperature profiles are shown in
figure 5 (b). The quantity of heat transferred to the plate
peor unit time is

o]
=k == 443,
0 Jymo (442)
The local convective heat-transfer rate is (Pr=1)
q___pUeCy _ S
h RN (0.664—0.704 mz )
(44b)

In the limit as the conductivity or field strength vanishes
(m—0), equation (44b) reduces to

UapCy

_J".pCy
h mo = 45
) 0 m ( 8')
or by virtue of equation (33a)
R mmo=s ¢;01.C) (45b)

2

Equation (45b) is often identified as Reynolds analogy.
A similar relation of equal simplicity was not found for the
problems treated in this paper.

The differential equation for flow over an insulated plate
is obtained from equation (40) by introducing the proper
expresgsion for T,’. The solution of equation (39) for the
insulated plate case is (see, e. g., ref. 28)

7 M
T=Tat35 (=1 (460)
and therefore,
2
T, =_Z’; o (46b)
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Equation (40) then becomes, for the insulated plate case
(Pr=1), S

oy T'So ’ o~ XU 4 : 4 N4
T +_22£—fa Tz_%: [gf?fo 1 =) —=2f," )" [=0

(46¢)

The temperature profiles (table I (¢)) for several values of
mz are shown in figure 5 (¢). It is to be noted that the re-
covery temperature is not altered by the magnetic field.
Such & result is to be expected since the magnetic field and
the fluid at the wall do not interact.

MAGNETIC FIELD FIXED RELATIVE TO THE FLUID

Velocity profile.—In this case the magnetic lines of force
move past the plate at the free-stream velocity. The fluid,
which is decelerated by the viscous action of the plate, re-
ceives a push from the magnetic field which counteracts the
viscous effect. Such a situation exists when a plate, vane,
or wing moves through a stationary electrically conducting
fluid and magnetic field. The boundary layer on a wing of
an aircraft flying in the ionosphere over the magnetic poles
of the earth could be considered to correspond to this
case. Under these circumstances, equation (7) reduces to

+U oB2

oty
5 U—Us)=V o ‘ C)
If the transformation of coordinates and the stream function
described by equations (25) and (26) are introduced into
equation (47), a set of ordinary linear differential equations
with variable coefficients is found for f5, f, . . .

1444 ’ /A 1 1 £ 77 77
F=f"1 _'2'fo 2 ——fzfo +7— (48a)
1224 r.£ 7 1f£7 1 144 3 44 5 144 U4 ~
I =20l s z-é’foﬁ —§f2f2 —§f4fo 41 (48b)
The boundary conditions are
Jo=fi=fi= . =0 at =0
f'=f'=f/=...=0 at =0
fo,=1 &ndfz,=f4,= ... =0 &t nN=w®

The integration for f; and f; was carried out by the same
method described in the previous section and the results are
tabulated in table II (a). Several velocity profiles are shown -
in figure 6 (2). The difference between the first- and second-
order curves is small at small values of mz. However, the
separation of the mz=0.5 curves indicates that the series
expression (27) does not converge rapidly. More than two
terms in the series must then be used if the velocity profile
is to be predicted accurately at values of mz higher than
about 0.2. The local skin-friction coefficient is

__0.6644-2.293 mz—2.768 m3*?+ . . . —
=

VEe,

" (49a)
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Ist order in mx

h

— — — 2nd order in mx |

(0 :

6
4 r=mx=0
J rm==-a10
/ ///F-—- 2
7 /l / ¥4 'I,_——- 50
// ,/ II /
/ 7 l/ /'
2k 4 /’ / ',
1 1 (e
0 8 16 24
T-Tq
uE 720,

IS

(a) Velocity.
(b) Temperature distribution for a cool wall, Ty="T,,.
(0) Temperature distribution for an insulated wall,

Fiaure 6.—Boundary-layer profiles for fluid flowing over a semi-
infinite flat plate with a transverse magnetic field fixed relative to
the fluid.

and the displacement thickness is
*=(1.73—221 ma4-5.22m¥t— . . . 4+ ...

(40b)

The disturbance caused by viscous action on the plate
results in a force on the magnetic field, which is given by

Flunit area=me oBu—u)dy
0
From equations (27), (66), and table IT (a),

Funit area=cBofuorz), (1=, —mafi—. . .)dn
= (1.73—2.21 ma+5.22 m33—

e+ DeBANuLve

=0ou_8*B,?

(49c)

The force would appear as a reaction on the unit generating

the magnetic field and not on the model which disturbs the
fluid.

Equation (47) is identical with the differential equation
for the case when the magnetic field is fixed with respect to
the plate and & pressure gradient exists just strong enough
to compensate for the electromagnetic effects at n= o,
The boundary conditions and, hence, also the numerical
results of table II (a) and figure 6 (2) can be applied to this
problem.

Temperature profile—Since the magnetic field lines are
now moving relative to the plate, the expression for the
electric current in the fluid is

j=cB,(u—u,)

The equation for the transport of thermal energy in the
boundary layer then becomes

o? ou\?
puC, %—1£1+P270p %—g-—aBo‘(u—uo ’=EP% 33% +n (5—'1/ ‘ (50)

If equations (47) and (50) are combined to describe the

transport of total energy in the boundary layer (Pr=1)

o IE

| pU %f—i—pv >y U, (t—u)eBli=p o (61)

: . )
where, as before, E=C,T-} % It is seen that the presence of

the magnetic field adds energy to the local element by doing
work on the fluid retarded by viscosity. The magnitude of
the work depends on the velocity, electrical conductivity,
and field strength. :

When the transformation of coordinates, equation (25),
and the series expansion, equation (37), are inserted into
equation (50), a set of differential equations is obtained for
T, Ty, Ty, . . . Therelation for T, is the same as eqqat.ion
(39) and that for T3 1is .

’’ i 2
O ey TASRT A (=120 1 1=0  (520)
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TABLE II.-.MAGNETIC FIELD FIXED RELATIVE TO FL:UID

(a) 8tream function ) Temperatare funo- | (¢) Temperature fune-
tion for cold plate tlon for insulated plate
" 5 ” Fr 7 W " T3 T T TY
U220, %e03/2Cp Uw?f2C, txY2C,
0 0 0 1147 0 0 —1.384 0 2.022 3. 228 0
.2 022 210 .953 —.028 —.275 —1.362 .337 1.370 3.163 —. 631
.4 .081 .382 W73 —.110 —. 542 —1.300 . 555 .821 2.985 ~1121
.8 .172 .520 . 608 —.243 —. 788 -1.205 672 .370 2723 —1.477
.8 <287 . 620 .453 —.425 —L 02 —1.080 .709 .014 2.403 -1.710
L0 .420 .72 .313 —. 850 —1.224 —. 932 .84 —.253 2.047 —1.830
1.2 . 508 752 .186 —.013 —1.3%¢ —. 765 .613 —.438 1677 —1.861
1.4 .79 777 072 —1.205 ~1.529 —.584 .513 —.549 1312 —1.788
1.6 .878 .781 —.028 —1.522 —~1.628 —.304 .308 —. 596 . 967 —1.652
1.8 L1 . 767 - 13 —1.854 —1.686 —. 202 .279 —. 589 . 664 —1.468
2.0 1.181 .37 —. 184 —2.163 ~-1.708 —.014 .165 —. 541 .383 —L 245
2.2 1.325 L6904 —. 241 —2.534 —1.602 .185 .064 —.464 .188 —1.008
2.4 1.458 .642 —. 282 —~2.868 —-L6é43 327 —.019 —. 369 —.019 —~. 766
2.6 1.581 .582 -.310 —3.189 —1. 563 .467 —. 083 —. 269 —. 148 -—.539
2.8 1.681 .519 —.323 —3. 492 —1.458 . 580 —.127 —-.172 —. 237 —. 337
3.0 1.788 454 —. 324 -3.771 ~1,333 .665 —.153 ~.087 —.288 —.168
32 L8713 .390 ~.314 —4, 024 —1.195 .73 —~.163 ~.018 —.305 —.030
3.4 1,044 .39 —. 206 —4.248 —1.050 .732 —. 161 . 038 —.301 L0898
3.6 2,004 272 —.270 —4.444 —. 004 T2 —. 149 .072 —.280 .134
3.8 2.054 .221 —. 240 —4.810 —.763 . 687 - 133 .092 —. 249 171
4.0 2.003 .176 —.208 —4.749 —. 630 632 —. 114 099 —.213 .184
4.2 2.124 .138 —.176 —4.863 —. 511 . 585 —. 0 087 —.17 .180
4.4 2,149 .105 —.145 —4.954 —. 405 . 480 —.075 089 —. 142 .168
4.8 2,167 .07 ~. 117 —5.028 —.315 .413 —.058 07 —. 111 144
4.8 2,181 .058 —.092 —b5.081 —. 240 L339 —. 044 . 064 —.084 .120
5.0 2.191 L042 -, 07 —5,123 -.179 .27 —.033 . 051 —. 033 097
5.2 2.108 .30 —. 053 —5.164 —. 180 .212 —.024 .040 —. 045 076
5.4 2,203 .01 —.039 —5.178 —.093 .161 —-.017 .030 —. 0323 .057
56 2.208 .014 —. 028 —5.192 —. 086 120 -—.012 .02 —. 022 .042
5.8 2.209 . 009 —.020 —5.203 —. 045 .087 —. 008 .016 —.015 .30
6.0 2210 . 008 —.013 —56.210 —.030 . 031 —. 005 .01 —.010 .21
6.2 2.211 . 004 —. 009 —5.215 —.020 013 —. 003 . 007 —. 008 .014
6.4 2.3212 . 002 —. 008 —5.218 —.013 .29 —. 002 . 005 —. 004 .010
6.6 2.212 . 001 —. 004 —5.220 —.008 .019 —. 002 .03 —. 0 . 006
6.8 2.212 . 001 —. 002 —5.222 —. 006 .012 —. 001 .002 —. 002 004
7.0 2.213 0 —. 002 —5.522 —.003 .008 1] . 001 —. 001 .002
7.2 2.213 0 —. 001 —5.223 —. 002 005 0 . 001 ~.001 . 602
7.4 2.213 0 —. 001 —5.223 —.00L . 003 0 0 0 001
7.6 2.213 0 [ —5.223 -—. 001 .002 0 0 0 . 001
7.8 2.213 0 0 —5.223 0 .001 0 (1] 0 0
80 2.213 0 0 ~b.223 0 . 001 0 0 0 0
8.2 2.213 0 1] —~b. 224 0 0 0 0 0 0
8.4 2.213 1] 0 —b. 224 0 0 0 0 0 0
8.6 2.213 0 0 ~5. 224 0 0 0 0 0 0

When the expression (42) is inserted into equation (52a) and
it is assumed that T,=T, and Pr=1, the result is

T+ f?—j TY—§/ Tyt %:’ [g Bt (%—f/) T

(52b)
(l—fo’)’+2fo”fs"]=0

The boundary conditions are
T,=0 at n=0
T2=0 at =

The numerical integration of equation (52b) was carried
out by the method used earlier and the results are tabulated
in table II (b). The temperature profiles shown in figure 6
(b) correspond to the same values of maz shown for the veloc-
ity profiles in figure 6 (a). The temperature gradient and
the heat transfer to the wall are, respectively,

%) 0=221’€; \/% (0.3324-2.022 me+ .. .)
U= P

o Cy

q
%720,  2vRe,

The recovery temperature for an insulated plate is altered
by ‘the relative motion between the magnetic field and the
fluid at the plate. The differential equation for the pertur-

h=—>L (0.664+4.044 ma+ . . .)

(83).

‘bation profiles are obtained by inserting equation (46b) into
equation (52a).

T4 T~ Tam G Bl 1 (120 5110

(54a)

Several typical temperature profiles (table IT (¢)) are shown
in figure 6 (c). The recovery temperature at the wall is
changed due to the j%/¢ or joule heating caused by the relative
motion between the magnetic field and the fluid at the plate;
that is, the recovery temperature at the wall is given by

B u 2
T,),-0=T,,+1.614f;°— mrt ... —
P
T)yao=T., + (1—|—3 228 mz-t- . ... (54b)

The heat transferred to the plate may also be written as
g=h(T,—T,), where T, is the recovery temperature given
by equation (54b) and T, is the wall temperature. Since
the magnetic field increases 7T, as well as 7, the heat-transfer
rate is increased in two ways.

MAGNETIC FIELD FIXED RELATIVE TO PLATE—FLUID OF VARIABLE
CONDUCTIVITY
Velocity proflle—Numerous problems in fluid dynamics
exist wherein the electrical conductivity of the fluid or the
strength of the magnetic field changes with distance from
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the surface. The magnetic field strength can be varied
somewhat by the design of the apparatus. It is possible to
adjust not only the strength of the field but also the variation
with distance from or along the surface within certain phys-
ical limits. A first approximation to the shape and magni-
tude of most magnetic fields would be & uniform magnetic
field of constant magnitude throughout the flow field. Such
a magnetic system will once again be chosen for this case.

The electrical conductivity of the fluid would be expected
to vary in a complicated manner in directions along and
perpendicular to the surface and from one situation to the
next. The constant value chosen for the conductivity in the
two previous cases is not realistic. The conductivity will
vary under actual conditions of flow in a boundary layer.
This will surely change the skin friction and heat transfer
from that found in the last two cases. A logical variation
will be studied in this section to see how large an effect a
variable conductivity will have on ¢, and k.

It is to be expected that the conductivity will vanish at
the outer edge of the boundary layer and reach a maximum
somewhere near the surface. The equations which can be
used to determine the number of ions (and hence conductiv-
ity) in a stream at high temperature or under circumstances
wherein combustion is taking place, are cumbersome.
Therefore, a simple, approximate, analytical relation for
the electrical conductivity as a function of temperature
between the plate and outer edge of the boundary layer
was not found. The conductivity of air after the passage
of & normal shock wave has been measured in a shock tube
and reported on page 339 of reference 3. The conductivity

is reproduced in figure 7. At Mach numbers above 20, the”

results are approximated by a straight line.
In view of the lack of knowledge of the variation of ¢ In
the boundary layer, a linear relation between the velocity

5

&, mhos/inch
W
1

N
T

0O 10 R 20 30
Mach number

Fiaure 7.—Electrical conductivity of air as a function of shock wave
Mach number as found in reference 3.
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decrement and the conductivity will be chosen for this
case. Therefore, it will be assumed that

o=a (22 (55)

(-]

where ¢, is the conductivity at the surface, where u=0,

Whether equation (55) is realistic is uncertain. Inserting
the expression (55) into equation (24) gives
au mu %
w0 @

As before, an ordinary differential equation for each of the
funections 3, f;, . . . results when the variables in equations
(25) and (26) are inserted into equation (56) and like powers
of mz are equated.

WIS =Sl =5l A=) (6T0)
T =21 f 5 —'—faf4" gf2f2”'—g'f4.fa’,+f2,"'2f2’fo,
(57b)
The boundary conditions are,
fo=fi=fi= ... =0 when =0
f'=f'=f'= ... =0 when 2=0

Jo'=1 == . =0 when 7=o

The numerical integration of equation (57a) was carried
out for f; by the method used in the other cases and the
results are tabulated in table III(a). Typical boundary-

layer velocity profiles are shown in figure 8(2). The local
skin-friction coefficient is
0.664—0.627 ma=k: .
= 58
f ‘\/RZ ( &)
and the displacement thickmness is
5*=(1.73+0.97 ma+ . .),/uﬂ (58b)

The force on the unit generating the magnetic field is
expressed by

F= aB,Numya:ﬁﬁm (1 —f,’ —mafy’ —
‘mafy +

The integral is evaluated through the use of equation (57a)
and table I1T (a2) as

F=oBXuvz (0.6644+0.649 mz+ . .
or, integrating from the leading edge ’t.o z,

J(f'+

. . .)dp/unit area

.)1b/unit area  (69a)

F=§a’o—oB,,*\/umm: (0.6640,390 mz-t . . . )lbjunit width

(59b)
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(a) Velocity.
(b) Temperature distribution for a cool wall, Tw=T,,.
(¢) Temperature distribution for an insulated wall.

Fioure 8.—Boundary-layer profiles for fluid flowing over a semi-
infinite flat plate with a transverse magnetic field fixed relative to
the plate-fluid of variable conductivity.
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Equation (592) or (59b) expresses a drag force 6n the plate‘
which is to be added to the friction drag. In coefficient
form, the local drag per unit area on the plate due to the
magnetic field is
Mz

Cp TFe (1.3284+1.209 ma-+ . . . )

’

When equations (58a) and (60a) are added, the net local
force coefficient to a first order in mz is

(60a)

1
c?_w/Re:

The interference of the magnetic field reduces the skin friction
at the expense of a higher drag.

Temperatare profile—The thermal-energy transport
equation is reduced in the manner used in the previous
cases. The electrical or joule heating is now deseribed by

2. g ("b:i*) .
o_-—-O’oBo " U
Equation (11) is'then .

2
oCu gf*' pvC, g; GLB" (8 —u)ut=

(0.6644-0.701 ma+- . . . ) (60Db)

G OT (0
Pr oy " \Jy

(61)

. \

If equation (56) is multiplied by » and added to equation
(61), the resulting equation for the transport of total energy
is identical with equation (36). Once again, the tempera-
ture distribution is changed but the total energy of the
fluid is not altered by the presence of a magnetic field.

The change of variables £, n, the stream function, ¥, and
temperature expansion given by equations (25), (26), and
(387), respectively, are now introduced into equation (61).
A set of linear ordinary differential equations for 7, T,
Ty, . . . is obtained for this case when like powers of mz
are equated. The expression for 7}, is once again the same
as equation (39). The differential equation for T} is

44 Ql 2
e A S AT A (09121 81=0
(62)

If it is assumed that Pr=1 and the expression for T’ is
inserted into equation (62), the result is

SRR LAY

%f [_g_ Fufo'! (%-f/)-}-(l _fo,)fo,2+2fal,.f?'l]=0 (63)

Numerical integration of equation (63) was carried out
by the method used for the previous cases. The results
are presented in table ITI (b) and several temperature
profiles are shown in figure 8 (b). The coefficient for the
convective heat-transfer rate is given by

h="%2C5 (0.664—0.206 ma— . . . 4+ ...) (64)

2/ Re,



504

REPORT 1358—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE III.—MAGNETIC FIELD FIXED RELATIVE TO PLATE—VARIABLE CONDUCTIVITY

(b) Temperature (¢) Temperature
(a) First-order stream function fun for function for
cold plate insulated plate
7 h Fd 1 T Ty Ta Ty
Uol2C, | w20, | Ual2C, | uxf2C,
- 0 0 0 —0.313 0 —0.103 0 0
.2 —. 006 -. 062 —.307 -—.012 —.021 .008 .082
.4 —. 025 - 122 ~.280 —.000 . 036 .032 .158
.0 —. 055 — 177 —.262 .00 12 .071 .21
.8 —. 005 —. 228 - 226 . 039 173 10 .208
T 1o | —.145 —.267 —.185 077 207 176 .205
1.2 —. 22 —.300 —.139 121 .23 . 236 . 300
1.4 —. 264 —-.323 —.002 .185 .20 .205 L2583
L6 —.330 —. 337 —. 045 208 .199 .348 .246 _
18 —.348 —. 341 0 <244 .163 392 .18 '
2.0 —. 466 -~ 337 004 272 17 424 .128
2.2 —. 532 —. 325 77 .200 . 064 .443 . 066
2.4 —. 598 —. 307 108 .268 .010 447 —.015
2.8 —. 6536 —.283 J128 204 —. 041 437 —. 081
2.8 —. 709 —.236 .143 .2%2 —. 085 . 415 -.138
30 —.757 —. 228 150 .261 —.118 .383 —. 180
3.2 —. 799 —. 196 . 150 235 —.140 .34 —.208
3.4 —. 835 —. 167 14 206 —. 151 .30 -. 21
3.6 —. 566 —. 139 L1384 175 —.162 .258 —.221
3.8 —. 801 —.113 <121 . 146 —.145 .213 —~.210
4.0 —.811 —. 000 .106 118 —.132 .173 —~.101
4.2 —. 927 —.071 . 0350 .03 —. 113 .137 —~.167
4.4 —. 40 —. 054 075 072 —-.097 .108 —~.141
4.6 —. 49 - (41 . 060 .034 —.079 .080 —.118
48 —. 958 —. 030 47 040 —.083 .080 —~.002
5.0 —. 881 - 022 .038 .029 —. (48 .43 -—.073
5.2 —. 983 —.015 027 .020 —.036 .031 —. 054
5.4 —. 938 —.011 .20 014 —. 027 .021 —.040
58 —. 070 —. 007 .014 . 009 -.019 .015 —~. 020
5.8 —.071 —. 005 .010 . 008 —.013 .010 -~.020
8.0 —. 972 —.003 . . 004 —. 009 . -—.014
6.2 —. 972 —. 002 .0605 003 —. 008 004 ~. 000
6.4 —. 972 —. 001 003 .002 —. 004 L0038 -~.008
6.6 —. 973 —. 00 . 002 .001 —~.003 002 .04
6.8 —. 973 0 .001 . 601 —. 002 . 001 -~.002
7.0 —. 973 [} .001 0 —. 001 .001 -~.001
N 7.2 —. 973 Y 0 0 —~. 001 0 —.001
7.4 —. 873 0 0 0 0 0 0
7.6 —-.973 0 [ (1] 0 [ ]
7.8 —. 073 0 0 0 0 0 0
8.0 —. 973 0 0 0 1} 0 0
8.2 —. 973 0 0 0 0 0 0
&4 —. 97 0 0 0 0 0 0
8.8 —. 973 0 0 o 1} 0 [}

The influence of the magnetic field on the heat-transfer
rate and skin friction is not so large in this case as in either
of the two previous cases (egs. (33a), (44b), (49a), and
(53)). From these results it is apparent that the change in
the heat-transfer rate and the skin friction is strongly
dependent on the manner in which the conductivity (or
magnetic field strength) vary through the boundary layer.
A magnetic field which changes in strength with distance
from the surface and & variable conductivity are to be
expected in the real physical situation.

The differential equation for flow over an insulated plate
is obtained by substitution of equatlon (46b) into equation
(62).

U 2
T2"+fog’2 '—fa’Ta '?;8; fzfo’fo”

—I_ué:; [(1”fo')fo,2+2fo”f2"]=0

The temperature profiles for several values of mx are shown
in figure 8 (c) and tabulated in table III (¢). As would be
expected, the recovery temperature at the wall is not altered
by the magnetic field because there is no relative motion
between the fluid at the wall and the magnetic field.

MAGNETIC PARAMETER
UNITS

The importance of the magneto-hydrodynamic effect
depends on the size of the magnetic parameter m=oB/pu...
The usual engineering units are: ¢ in mhosfinch; B, in lines/
square inch; p in slugs/cubic foot; and u,, in feet/second. If
each of these quantities is expressed as such, the parameter

mz will be dimensionless only if multiplied by a factor which
relates the various dimensional quantities. When the cor-
rect conversion factors are ingerted, reference 27,

)]
) E-E)

m; 6.4323¢10-10 (n%h08> [B’ (h-ﬂes>]’
() Ge)

where p,=0.002378 slugs/ft® is the air density at sea level.
Another method of finding the conversion factor for m is
to combine the electric motor equations (ref. 35)

m=1.520 <1 per inch (65a)

per inch  (65b)

F=8.8507%10-% B,li 1b (660)

E=B,lux10"8 volts=-~

o (66b)

s0 that
' Force lb sec

- =8.8507 X107 cB?

or
force/l®  (8.8507)(1728)10~ +B2
po(pfpo)u® 0.002378 (pfpo)u

- 2
—6.432 101 (p—‘;ﬁ;—u— per inch

per inch
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In words, the parameter m expresses the ratio of electro-
magnetic force density to dynamic pressure.

The value of m can easily vary over many orders of mag-
nitude. However, the density p and velocity u associated
with a particular vehicle are generally fixed within relatively
narrow limits. It remains, then, to adjust the conductivity
and magnetic field atrength so that the desired characteristics
are achieved. The limits for the magnetic field strength lie
between zero and a maximum (discounting astrophysical
possibilities) of about 10%ines/sq in. The electrical con-
ductivity depends on the fluid considered and can vary over
wide limits from very small values for insulators to approxi-
mately 10° mhosfinch for metals. The results of several

investigations of the conductivity of gases will be discussed

in the next section.
ELECTRICAL CONDUCTIVITY

The information on the electrical conductivity® of gases
under the special conditions of this report is not large.
However, it is known that the air around a missile will be
a conductor if: {1) the energy imparted to the air is great
enough to ionize it; (2) metal is ablated from the missile;
(3) the missile is in the ionosphere where the air is ionized
by radiation from the sun; or (4) other special devices are
used to ionize the air, such as irradiation by high energy
particles.

The electrical conductivity of air behind a normal shock
wave has been measured in a shock tube and is reported on
page 339 of reference 3. The results, replotted in figure
7, indicate conductivities of the order of 1 to 5 mhos/inch
for air behind strong shock waves.

Firings of ultraspeed pellets, references 36 through 39, in-
dicate that another phenomenon will enter the problem of
conductivity. Photographs and spectrographs taken with
special cameras show that metal is eroded or ablated from
the pellet and swept off the model into the wake where it
burns, Since the metal is in a liquid spray or vapor form
while it is in the vicinity of the pellet, the conductivity there
would be increased by a sizable amount. It would beé diffi-
cult to estimate the orders of magnitude to be expected.
The tests show that the air can be made a conductor by
ionization of its molecules and atoms and/or by metal vapor
or spray eroded from the surface of the vehicle. It is pointed
out in reference 40 that the latter effect predominates when
meteors enter the earth’s atmosphere.

The air in the ionosphere is partially ionized by radiation
from the sun so that it is a conductor without addition of
energy from the aircraft. The amount of ionization at
various altitudes and the total number of particles are listed
in tables 2 and 9 of reference 41. A rough estimate of the
conductivity is found from reference 7 as

(67)

71»62[0 NO
o= =33 1076 n == mhos/inch
w0, v mhos/1
¢ Good elvetrical conduetors are always good heat conductors, ‘The ratio may be expressed
approxmately as (vel. 7),
E w3 /x\2
5 (3)

whero & 13 tho coefliclent of thermal conductivity, « Is Boltzmann’s constant, and e Is the
charge on an electron -
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where ¢, ,, m,, and U, are the charge, mean free path length,
mass, and velocity, respectively, of the electron and N, and N
are the particle density at sea level and the altitude in ques-
tion. The factor n is the electron density. The values for
o range from 10~* mhos/in. at 62 miles altitude to about 32
mhosfin. at 250 miles altitude.

The large variety in fuels makes it difficult to bracket the
magnitude of the conductivity of combustion products but
information is available for several cases. It was reported
in reference 5 that the conductivity of the jet from a 50-
pound thrust acid-aniline rocket motor was measured as
being about 1078 mhos/in. It was added, however, that the
addition of a small amount of an impurity such as sodium
would strikingly increase the electron density.

A discussion is given in reference 6 of similar experiments
and theory on the combustion of hydrocarbon fuels. The
experimental evidence required that the number of electrons
in the combustion produects (10" to 10 per cc) be several
orders of magnitude greater than predicted theoretically
(10% to 10° per-cc). The maximum conductivity can be
estimated by equation (67) to be roughly 1072 mhos/inch.

Although the conductivities discussed are low compared
with those of metals, they appear to be large enough so that
appreciable magneto-hydrodynamic forces can be exerted.
If the conductivity is too low for a specific case, it may be
possible that alkaline salts or some other additive can be
used to increase the number of free electrons and ions.

APPLICATIONS

The possibility of using & magnetic field to prevent a hot
fluid from coming in contact with a wall which it would dis-
solve or destroy was discussed in the infroduction. The
extent to which this can be accomplished is measured directly
by the parameter m=(cB,*/pu,). The larger the parameter
m is, the more effectively the “fluid suspension” process can
be carried out. The influence of the magnetic field on the
fluid is expressed in equations (33), (44), (49), (53), (58), ...
by the product mz. The distance = represents an ‘“adjust-
ment distance”’ required before the fluid responds a given
amount or adjusts to the magnetic lines of force. If the
magnetic parameter is very large, the adjustment distance
will be very small and the fluid will follow the magnetic
lines of force quite closely as indicated in figure 9. The
magnetic force restraing any motion across the lines of force
because the inertia forces are insignificant in comparison. In
this limit the magnetic lines of force are the same as invisible
solid boundaries.

stctre =/ N2 NFZ NS
— S o \'L —_— et
Wires™ -Magnefic lines
F1eure 9.—Sketch of fluid of high electrical conductivity flowing over
a surface.
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If the parameter m is very small the adjustment distance
2 becomes very large and the influence of the magnetic field
becomes negligible.

The numbers quoted in the last section for the conductivity
und field strength indicate that most of the applications will
lie between the two extreme limits.

FLOW OVER A HIGH-SPEED VEHICLE

Magneto-aerodynamic effects may be used to alter the
external flow over aircraft. Examples which illustrate the
changes in the boundary layer will now be discussed. It will
be pointed out that the skin friction on an aircraft might be
reduced by judicious use of a magnetic field either to inhibit
transition to turbulent flow or to alter the boundary-layer
profile.

It has been shown in reference 13 that the Reynolds num-
ber of transition is raised when a coplanar magnetic field is
applied. The results of reference 13 can be used as a rough
estimate for flows of the boundary-layer type when the par-
ticular velocity distribution may be approximated by a para-
bolic profile. This is permissible since a coplanar magnetic
field does not change the velocity profile, which is not so for
the cases considered in this paper.

The results of reference 14 for a transverse magnetic field
apply to a two-dimensional channel and should not be used
for flows of the boundary-layer type because of the chiange
induced by the magnetic field on the velocity profile. For
the flow in the two-dimensional channel the change in the
velocity profile was largely responsible for the resistance to
turbulence. The same will not always be true for other types
of flow fields. It will then in general be necessary to carry out
a stability calculation in order to determine whether a trans-
verse magnetic field tends to stabilize or destabilize the
boundary layer. A situation wherein the magnetic field
destabilizes the flow field is presented in reference 26,
warning one that the presence of a magnetic field does not
always decrease the likelihood of transition.

The numerical results of table I and the equations (33)
and (44) may be used to estimate the effects of a magnetic
field attached to an aircraft on boundary layers of uniform
electrical conductivity. The model analyzed theoretically
will probably never be duplicated in a physical situation.
However, circumstances may arise wherein the conductivity
and magnetic field are such that they vary only slightly or
are almost upiform in & layer of finite depth. This might
occur, for example, (1) in the boundary layer of high-speed
aircraft; (2) in the region between the surface of a blunt
body and its shock wave; (3) in local regions near an aircraft
when material is being ablated from the surface; or (4) in
the ionosphere wherein air is ionized by radiation from the
sun (ref. 41) and is then a uniform conductor, provided the
influence of the aircraft is small. The fact that the layer is
of finite thickness causes the equations to be in error at the
interface. However, if the conducting layer is relatively
thick the equations would serve as a good estimate in the
vicinity of the surface.

The second semi-infinite flat plate case which was analyzed,
equations (49) and (53), could be thought to correspond to
flight over the magnetic poles of the earth or through some

~
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other magnetic field. The electrically conducting fluid
could come about by the same processes mentioned in the
previous paragraph. As before, the magnetic field strength
and electrical conductivity will probably not correspond
exactly to the model analyzed. A close approximation is
obtained when an aircraft flies through the ionosphere over
one of the magnetic poles of the earth (provided the influence
of the aircraft on the electrical conductivity of the air and
on the magnetic field is small). Since the earth’s magnetic
field is small (B,=~4 lines/sq in. from ref. 42), effects of this
type are generally negligible in the lower reaches of the
ionosphere. At the higher altitudes the magnetic parameter
is large enough to cause a change in the heat-transfer rate
but at those altitudes the mean free path is so large that the
continuum flow analysis of this report is no longer applicable.

If the air in the boundary layer is ionized by frictional
heating, the conductivity of the air will change with distance
from the surface (fig. 10). The actual variation to bo
expected would be difficult to predict theoretically. The

2

s':

Figure 10.—Aireraft moving through the atmosphere at high speed.

solution for a boundary layer with variablé electrical con-
ductivity found in a previous section of this paper (egs.
(58), (59), (60), and (64)) and tabulated in table ITII can be
used as an approximate answer. Equation (58) shows that
the skin friction can be reduced by a sizable amount at the
expense of increased total drag (see eq. (60)). The advan-
tages of using a magnetic field lie in the possibility of reducing
the aerodynamic heating, as expressed by equation (64).
The preceding discussion dealt with the advantages that
may be achieved by reducing the skin friction, heat transfer,

" or turbulence. Favorable effects may also be obtained by

increasing the displacement thickness of the boundary layer.
Such a device, figure 11, could be used on the lower surface
of a wing or body to induce forces for lift, control purposes,
or drag. The magnitude of these forces is easily changed
by increasing or decreasing the field strength which in turn
increases or decreases the displacement thickness.

Several additional problems arise when magneto-hydro-
dynamic effects are used. The system generating the
magnetic field will need to be cooled since its parts will
dissipate power. Also, the weight of the unit required fo
generate & magnetic field of sufficient strength may be too
large to consider, or of such a size that any advantages are
nullified. If the slow moving fluid is hot enough to radiate
energy, a sizable quantity of heat may be transferred even
though the hot fluid is not in contact with the surface. An



FLOW OF ELECTRICALLY CONDUCTING FLUIDS IN A TRANSVERSE MAGNETIC FIELD 507

.,.—.5-““}} ““““ N\ 7 Boundary ~layer edge

- ~4
Magnetic lines?

TF'igure 11.—Schematic diagram indicating use of magnetic field to
build up the boundary layer on a wing for lift or control purposes.

evaluation of this effect would require a more complete
analysis than the solutions developed in this paper.

Whether the applications just discussed can actually be
made depends on the magnitude of the quantities entering
the parameter m. Consider, for example, an aircraft moving
through the upper atmosphere at 25,000 feet per second.
From figure 7, a conductivity of not over 5 mhos/inch is to be
expected. If p/p, is taken as 1074, and the above values are
inserted into equation (65b),

2
m=0.43<10"1° % ~10~°B,?

In figures 5, 6, and 8, it is seen that the product mz should be
of the order of 0.1 for a notable magneto-aerodynamic
effect to be brought about. If z is taken as about 100
inches, the magnetic field strength, B,, should be around
1000 lines per square inch so that the product mz is equal
to 0.1. A magnetic field of such a strength is not unreason-
able.

FLOW IN PROPULSION UNITS

The discussion on the reduction of skin friction and heat-
transfer rate to the walls of an aircraft by electromagnetic
forces applies as well to the internal flow of reaction engines.
It may be added that a uniform magnetic field across the
jet stream corresponds to the channel flow problems studied
in references 8 to 12 and 14. In general, imposing such a
field increases the skin friction, equation (49a), and lowers
the thrust because of the interference of the magnetic field.
A compensating influence is realized through a reduction in
turbulence in the stream (see, e. g., refs. 9 and 14) which
lowers the skin friction, heat transfer, and probably the
noise level of jet engines. Shallow magnetic fields appear to
be the most promising for reducing the heat transfer if the
flow is nearly laminar.

The cases and illustrations considered so far have assumed
that an electric potential E has not been applied across
the fluid. To do so would add another force term (see eq.
(2)) to equations (7) and (11). If a source of power is
available, 2 combined electric and magnetic field can be
used to mancuver the fluid. A possible application would

be to use the combined fields to induce an electric motor |

action to obtain very high exhaust velocities.

CONCLUDING REMARKS

The laminar boundary-layer solutions presented in this
paper for the flow of an incompressible electrically conducting
fluid over a flat plate indicate the changes that will be
brought about by a transverse magnetic field. It has been
found that the skin friction and heat-transfer rate are re-
duced if there is no relative motion between the plate and the
magnetic field. The skin friction and heat-transfer rate in-
creased in the case where relative motion was assumed. In
all the cases studied the total drag was increased.

The product of the magnetic parameter m and an adjust-
ment distance z is the quantity which determines the effec-
tiveness of the magnetic field to change the heat-transfer
rate. Other studies have shown that a magnetic field will in
certain cases inhibit transition to turbulent flow and thereby
retain a lower heat-transfer rate.

All the cases studied, except one, assume that the con-
ductivity and magnetic field did not change with distance
from the surface. A more realistic case of a variable conduc-
tivity was considered in one example where a special variation
was chosen. The reduction in heat-transfer rate and skin
friction for a given value of mz was not as large as when the
conductivity was constant. This points out the importance
of considering the way in which the conductivity and mag-
netic field strength change with distance from the surface.

AMESs ABRONAUTICAL LABORATORY
NarioNaL ApvisorY COAMITTEE FOR AERONAUTICS
MorrerT Fierp, Cavrr., Mar. 18, 1967
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